Fluid Circulations at Structural Intersections through the Toro-Bunyoro Fault System (Albertine Rift, Uganda): A Multidisciplinary Study of a Composite Hydrogeological System

Author:

Walter Bastien1ORCID,Géraud Yves1,Hautevelle Yann1,Diraison Marc1,Raisson François2

Affiliation:

1. GeoRessources, UMR 7359, Université de Lorraine, CNRS, CREGU, ENSG Campus Brabois, 2 Rue du Doyen Roubault, BP10162, F-54505 Vandoeuvre les Nancy, France

2. Total CSTJF, Avenue Larribau, F-64016 Pau Cedex, France

Abstract

Regional fault structures along rift basins play a crucial role in focusing fluid circulation in the upper crust. The major Toro-Bunyoro fault system, bounding to the east of the Albertine Rift in western Uganda, hosts local fluid outflow zones within the faulted basement rocks, one of which is the Kibiro geothermal prospect. This major fault system represents a reliable example to investigate the hydrogeological properties of such regional faults, including the local structural setting of the fluid outflow zones. This study investigated five sites, where current (i.e., geothermal springs, hydrocarbon seeps) and fossil (i.e., carbonate veins) fluid circulation is recognized. This work used a multidisciplinary approach (structural interpretation of remote sensing images, field work, and geochemistry) to determine the role of the different macroscale structural features that may control each studied fluid outflow zones, as well as the nature and the source of the different fluids. The local macroscale structural setting of each of these sites systematically corresponds to the intersection between the main Toro-Bunyoro fault system and subsidiary oblique structures. Inputs from three types of fluid reservoirs are recognized within this fault-hosted hydrogeological system, with “external basin fluids” (i.e., meteoric waters), “internal basin fluids” (i.e., hydrocarbons and sediment formation waters), and deep-seated crustal fluids. This study therefore documents the complexity of a composite hydrogeological system hosted by a major rift-bounding fault system. Structural intersections act as local relative permeable areas, in which significant economic amounts of fluids preferentially converge and show surface manifestations. The rift-bounding Toro-Bunyoro fault system represents a discontinuous barrier for fluids where intersections with subsidiary oblique structures control preferential outflow zones and channel fluid transfers from the rift shoulder to the basin, and vice versa. Finally, this work contributes to the recognition of structural intersections as prime targets for exploration of fault-controlled geothermal systems.

Funder

Total

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3