Neural Network Optimization and Data Fusion Recognition Method for Intelligent Mechanical Fault Diagnosis

Author:

Chen Ying1ORCID

Affiliation:

1. College of Mechanical Engineering, Jilin Engineering Normal University, Changchun, 130052 Jilin, China

Abstract

With the improvement of mechanical equipment complexity and automation level, the importance of mechanical equipment fault diagnosis is more and more prominent, and the choice of appropriate diagnosis method is crucial to the accuracy of the diagnosis results. Wavelet analysis and neural network technology, as the hot spot and frontier of research, are also important research contents in the development of intelligent diagnosis of mechanical fault. Data fusion can process multisource information to obtain more accurate and reliable methods. At the same time, because of its good nonlinearity, adaptability, and fault tolerance, neural network has become the preferred method of mechanical fault diagnosis. This paper first describes the research content and significance of fault diagnosis technology and introduces the main methods and steps of fault diagnosis, and through the introduction of mechanical fault vibration signals, vibration signals were analyzed in time domain and frequency domain. Secondly, the definition and classification of data I fusion and RBF neural network are introduced in detail and compared with BP neural network. Because the prediction accuracy of the RBF network is higher than that of the BP neural network and the training time of the RBF network is obviously shorter than that of the BP network, the RBF network has significant advantages over diagnostic errors. In this paper, six valve signals were collected under normal conditions and errors, and by analyzing and comparing different theoretical foundations, the 4-second network crisis time was effectively reduced, which provided the basis for teaching monitoring.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Hydraulic Cylinder Faults, Diagnostics, and Prognostics;International Journal of Precision Engineering and Manufacturing-Green Technology;2024-06-20

2. Deep Learning Techniques for Emotion Recognition From EEG Signals: Improving Accuracy and Efficiency;2023 International Conference on Computational Intelligence, Networks and Security (ICCINS);2023-12-22

3. Analysis and System Design of Mechanical Fault Diagnosis Based on Deep Neural Network;Mathematical Problems in Engineering;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3