Fatigue Life of Construction Elements in a Complex Stress State

Author:

Łukaszewicz Krzysztof1

Affiliation:

1. Faculty of Mechanical Engineering, Bialystok Technical University, ul. Wiejska 45C, 15-351 Bialystok, Poland

Abstract

This paper presents a method of assessing fatigue strength for a body in conditions of cyclical tension and torsion. The theoretical calculations have been conducted using the criterion of averaged structural microdamage resulting from local slips. The description of microdamages of such a body, in the view of the slip concept, was done by using a half-sphere with a unit radius, on the surface of which the location of all local physical planes and slip systems was determined employing three angles. A computer method was used to determine the slip boundaries in a complex stress state, analyzing the slip condition for all combinations of angles. Based on the calculated values of the microdamages' intensity function, the number of loading cycles until the moment of fracture initiation was estimated. Experimental verification of the suggested criterion was conducted using cylindrical smooth specimens, made of C45 steel. The tests of fatigue strength were made under conditions of a constant amplitude of zero-start pulsating loads.

Funder

Bialystok Technical University

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3