Deep Generative Modeling Based on VAE-GAN for 3D Indoor Scene Synthesis

Author:

Li Shuai1ORCID,Li Hongjun1ORCID

Affiliation:

1. College of Science, Beijing Forestry University, Beijing 100083, China

Abstract

With the advancement of virtual reality and 3D game technology, the demand for high-quality 3D indoor scene generation has surged. Addressing this need, this paper presents a method leveraging a VAE-GAN-based framework to conquer two primary challenges in 3D scene representation and deep generative networks. First, we introduce a matrix representation to encode fine-grained object attributes, alongside a complete graph to implicitly capture object spatial relations—effectively encapsulating both local and global scene structures. Second, we devise a unique generative framework based on VAE-GAN and the Bayesian optimization. This framework learns a Gaussian distribution of encoded object attributes through a VAE-GAN network, allowing for sampling and decoding of the distribution to generate new object attributes. Subsequently, a U-Net is employed to learn spatial relations between objects. Lastly, the Bayesian optimization module amalgamates the generated object attributes, spatial relations, and priors learned from data, conducting global optimization to generate a logical scene layout. Experimental results on a large-scale 3D indoor scene dataset substantiate that our method effectively learns inter-object relations and generates diverse and plausible indoor scenes. Comparative experiments and user studies further validate that our method surpasses the current state-of-the-art techniques in indoor scene generation and is comparable to real training scenes.

Funder

Beijing Forestry University

Publisher

Hindawi Limited

Subject

Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3