Bone Marrow Culture-Derived Conditioned Medium Recovers Endothelial Function of Vascular Grafts following In Vitro Ischemia/Reperfusion Injury in Diabetic Rats

Author:

Korkmaz-Icöz Sevil12ORCID,Sistori Gianluca1,Loganathan Sivakkanan12,Sayour Alex Ali13,Brlecic Paige1,Radovits Tamás3,Brune Maik4,Karck Matthias1,Szabó Gábor12

Affiliation:

1. Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany

2. Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle, Germany

3. Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary

4. Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany

Abstract

Ischemia/reperfusion injury (IRI) remains a challenge in coronary artery bypass grafting (CABG). Diabetic patients with coronary artery disease are more likely to require CABG and therefore run a high risk for cardiovascular complications. Conditioned medium (CM) from bone marrow-derived mesenchymal stem cells has been shown to have beneficial effects against IRI. We hypothesized that adding CM to physiological saline protects vascular grafts from IRI in diabetic rats. Bone-marrow derived cells were isolated from nondiabetic rat femurs/tibias, and CM was generated. As we previously reported, CM contains 23 factors involved in inflammation, oxidative stress, and apoptosis. DM was induced by streptozotocin administration. Eight weeks later, to measure vascular function, aortic rings were isolated and mounted in organ bath chambers (DM group) or stored in 4°C saline, supplemented either with a vehicle (DM-IR group) or CM (DM-IR+CM group). Although DM was associated with structural changes compared to controls, there were no functional alterations. However, compared to the DM group, in the DM-IR aortas, impaired maximum endothelium-dependent vasorelaxation in response to acetylcholine (DM 86.7 ± 0.1 % vs. DM-IR 42.5 ± 2.5 % vs. DM-IR+CM 61.9 ± 2.0 %, p < 0.05 ) was improved, caspase-3, caspase-8, caspase-9, and caspase-12 immunoreactivity was decreased, and DNA strand breakage, detected by the TUNEL assay, was reduced by CM. We present the experimental finding that the preservation of vascular grafts with CM prevents endothelial dysfunction after IRI in diabetic rats. Targeting apoptosis by CM may contribute to its protective effect.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3