Optimization of Synthesis Conditions of β-FeOOH Nanorods towards Antimicrobial Benefits

Author:

Mohammadi Fatemeh1ORCID,Amiri Salme2ORCID,Mirzaei Esmaeil2ORCID,Gholami Ahmad3ORCID

Affiliation:

1. Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, P.O. Box 71348-14336, Iran

2. Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, P.O. Box 71348-14336, Iran

3. Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, P.O. Box 71348-14336, Iran

Abstract

FeOOH nanoparticles have recently appealed to wide-ranging applications due to their physicochemical properties and size-tunable synthesis; however, a few studies were performed on the antimicrobial potentials of iron oxyhydroxide nanoparticles. In this regard, we aimed to design various synthesis experiments to optimize the fabrication of β-FeOOH nanorods (NRs) with a desirable size of NRs and high antimicrobial potential. For this purpose, ten experiments were designed by manipulating reaction conditions of the standard hydrolysis method, including the initial concentration of ferric ions, reaction time, reaction temperature, and different concentrations of surfactants of PEI and PEG as process control agents. The structural characteristics of prepared NRs were analyzed using FE-SEM, FTIR, and XRD. The ImageJ software was also used to measure the length, width, and aspect ratio of NRs. Five microbial species, including the Gram-positive and Gram-negative bacteria and fungi species, were applied to investigate the antimicrobial potentials of NRs. The initial concentration of ferric ions revealed a dominant effect in NRs’ morphology, though other reaction conditions also played essential roles. The crystal structure of NRs was preserved in all synthesis experiments (β-phase) due to using the same iron salt precursors. The synthesized NRs exhibited dose-dependent antimicrobial activities against all tested microbial species. Additionally, the presence of surfactants exhibited an excellent capability of controlling effects on the size and growth pattern of NR crystals and improving their antimicrobial potentials; PEI could also be more effective on the antimicrobial efficacy of final NRs. Besides, our findings exhibited an inverse correlation between aspect ratio and antimicrobial potentials of β-FeOOH NRs. To sum up, it seems that optimization of synthesis conditions could provide tunable size and structure patterns of β-FeOOH NRs to achieve a promising tool for biomedical applications, particularly in combat with resistant microbial species, though further studies are needed in this regard.

Funder

Shiraz University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3