Superparamagnetic Iron Oxide (Fe3O4) Nanoparticles Coated with PEG/PEI for Biomedical Applications: A Facile and Scalable Preparation Route Based on the Cathodic Electrochemical Deposition Method

Author:

Karimzadeh Isa12,Aghazadeh Mustafa3ORCID,Doroudi Taher1,Ganjali Mohammad Reza45,Kolivand Peir Hossein1

Affiliation:

1. Shefa Neuroscience Research Center, Khatam ol Anbia Specialty and Subspecialty Hospital, Tehran, Iran

2. Department of Physics, Faculty of Science, Islamic Azad University, Tehran, Iran

3. NFCRS, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-834, Tehran, Iran

4. Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran

5. Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Cathodic electrochemical deposition (CED) is introduced as an efficient and effective method for synthesis and surface coating of superparamagnetic iron oxide nanoparticles (SPIONs). In this way, bare Fe3O4 nanoparticles were electrosynthesized through CED method from aqueous solution Fe3+ : Fe2+ chloride (molar ratio of 2 : 1). In the next step, the surface of NPs was coated with polyethyleneimine (PEI) and polyethylene glycol (PEG) during the CED procedure, and PEG/PEI coated SPIONs were obtained. The prepared NPs were evaluated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and field-emission scanning electron microscopy (FE-SEM). The pure magnetite phase and nanosize (about 15 nm) of the prepared NPs were confirmed by XRD and FE-SEM. The presence of two coats (i.e., PEG and PEI) on the surface of electrosynthesized NPs was proved via FTIR results. The percentage of polymer coat (37.5%) on the NPs surface was provided by TGA analysis. The high magnetization value, negligible coercivity, and remanence measured by VSM indicate the superparamagnetic nature of both prepared NPs. The obtained results confirmed that the prepared Fe3O4 nanoparticles have suitable physicochemical and magnetic properties for biomedical applications.

Publisher

Hindawi Limited

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3