Traffic Control Models Based on Cellular Automata for At-Grade Intersections in Autonomous Vehicle Environment

Author:

Wu Wei1ORCID,Liu Yang1,Xu Yue2,Wei Quanlun3,Zhang Yi45ORCID

Affiliation:

1. School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410076, China

2. Polytech Nantes, Université de Nantes, 44600 Nantes, France

3. College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China

4. China Institute of Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China

5. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Autonomous vehicle is able to facilitate road safety and traffic efficiency and has become a promising trend of future development. With a focus on highways, existing literatures studied the feasibility of autonomous vehicle in continuous traffic flows and the controllability of cooperative driving. However, rare efforts have been made to investigate the traffic control strategies in autonomous vehicle environment on urban roads, especially in urban intersections. In autonomous vehicle environment, it is possible to achieve cooperative driving with V2V and V2I wireless communication. Without signal control, conflicted traffic flows could pass intersections through mutual cooperative, which is a remarkable improvement to existing traffic control methods. This paper established a cellular automata model with greedy algorithm for the traffic control of intersections in autonomous vehicle environment, with autonomous vehicle platoon as the optimization object. NetLogo multiagent simulation platform model was employed to simulate the proposed model. The simulation results are compared with the traffic control programs in conventional Synchro optimization. The findings suggest that, on the premises of ensuring traffic safety, the control strategy of the proposed model significantly reduces average delays and number of stops as well as increasing traffic capacity.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3