Influence of Vanadium 4+ and 5+ Ions on the Differentiation and Activation of Human Osteoclasts

Author:

König Matthias A.1ORCID,Gautschi Oliver P.2,Simmen Hans-Peter1ORCID,Filgueira Luis3ORCID,Cadosch Dieter4ORCID

Affiliation:

1. Department of Traumatology, University Hospital Zurich, Zurich, Switzerland

2. Département de Neurosciences Cliniques, Geneva University Hospital, Geneva, Switzerland

3. School of Anatomy and Human Biology, University of Western Australia, Perth, WA, Australia

4. Department of General and Trauma Surgery, Triemlispital, Zurich, Switzerland

Abstract

Background. In the pathophysiology of implant failure, metal ions and inflammation-driven osteoclasts (OC) play a crucial role. The aim of this study was to investigate whether vanadium (V) ions induce differentiation of monocytic OC precursors into osteoresorptive multinucleated cells. In addition, the influence of V ions on the activation and function of in vitro generated OC was observed. Methods. Human monocytes and osteoclasts were isolated from peripheral blood monocytic cells (PBMCs). Exposition with increasing concentrations (0–3 μM) of V4+/V5+ ions for 7 days followed. Assessment of OC differentiation, cell viability, and resorptional ability was performed by standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium (MTS), tartrate-resistant acid phosphatase (TRAP) expression, and functional resorption assays on bone slides during a period of 21 days. Results. No significant differences were noted between V4+/V5+ ions (p>0.05). MTS showed significant reduction in cellular viability by V concentrations above 3 μM (p<0.05). V concentrations above 0.5 μM showed negative effects on OC activation/differentiation. Higher V concentrations showed negative effects on resorptive function (all p<0.05) without affecting cell viability. V4+/V5+ concentrations below 3 μM have negative effects on OC differentiation/function without affecting cell survival. Conclusion. Vanadium-containing implants may reduce implant failure rate by influencing osteoclast activity at the bone-implant interface. V-ligand complexes might offer new treatment options by accumulating in the bone.

Funder

International Team for Implantology (ITI) Center

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3