Nanotribological Properties of Graphite Intercalation Compounds: AFM Studies

Author:

Chen Zhiwei1ORCID,Guo Dan1ORCID,Si Lina2,Xie Guoxin1ORCID

Affiliation:

1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Tetraalkylammonium salts have larger ions than metal ions, which can greatly change the interlayer space and energy, and then potentially tune the properties of graphite. In this work, various graphite intercalation compounds (GICs) have been synthesized by intercalating tetraoctylammonium bromide (TOAB) ions into graphite through electrochemical interactions under different reduction potentials. Different degrees of expansion between graphite layers as well as their corresponding structures and topographies have been characterized by different analytical techniques. The nanoscale friction and wear properties of these GICs have been investigated by AFM-based nanofrictional and scratch tests. The results show that electrochemical intercalation using tetraalkylammonium salts with different interaction potentials can tune the friction and wear properties of graphite. Under relatively large applied loads of AFM tips, friction increase and wear can be easier to occur with the increase of the intercalation potential. It is inferred that the increases of both the interlayer space of graphite and the number of ions on the surface give rise to puckered effect and formation of rougher surfaces. This work gives us deep insight into the friction and wear properties of GICs as composite lubrication materials, which would be of great help for material design and preparation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3