Sparse Parallel MRI Based on Accelerated Operator Splitting Schemes

Author:

Cai Nian1ORCID,Xie Weisi23,Su Zhenghang123,Wang Shanshan23ORCID,Liang Dong23ORCID

Affiliation:

1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen, China

3. Shenzhen Key Laboratory for MRI, Shenzhen, Guangdong, China

Abstract

Recently, the sparsity which is implicit in MR images has been successfully exploited for fast MR imaging with incomplete acquisitions. In this paper, two novel algorithms are proposed to solve the sparse parallel MR imaging problem, which consists ofl1regularization and fidelity terms. The two algorithms combine forward-backward operator splitting and Barzilai-Borwein schemes. Theoretically, the presented algorithms overcome the nondifferentiable property inl1regularization term. Meanwhile, they are able to treat a general matrix operator that may not be diagonalized by fast Fourier transform and to ensure that a well-conditioned optimization system of equations is simply solved. In addition, we build connections between the proposed algorithms and the state-of-the-art existing methods and prove their convergence with a constant stepsize in Appendix. Numerical results and comparisons with the advanced methods demonstrate the efficiency of proposed algorithms.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3