Prediction of Pathological Subjects Using Genetic Algorithms

Author:

Sari Murat1ORCID,Tuna Can1

Affiliation:

1. Department of Mathematics, Yildiz Technical University, Esenler, Istanbul 34220, Turkey

Abstract

This paper aims at estimating pathological subjects from a population through various physical information using genetic algorithm (GA). For comparison purposes,K-Means (KM) clustering algorithm has also been used for the estimation. Dataset consisting of some physical factors (age, weight, and height) and tibial rotation values was provided from the literature. Tibial rotation types are four groups as RTER, RTIR, LTER, and LTIR. Each tibial rotation group is divided into three types. Narrow (Type 1) and wide (Type 3) angular values were called pathological and normal (Type 2) angular values were called nonpathological. Physical information was used to examine if the tibial rotations of the subjects were pathological. Since the GA starts randomly and walks all solution space, the GA is seen to produce far better results than the KM for clustering and optimizing the tibial rotation data assessments with large number of subjects even though the KM algorithm has similar effect with the GA in clustering with a small number of subjects. These findings are discovered to be very useful for all health workers such as physiotherapists and orthopedists, in which this consequence is expected to help clinicians in organizing proper treatment programs for patients.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solving the coupled Schrödinger -Korteweg- de-Vries system by modified variational iteration method with genetic algorithm;Wasit Journal of Computer and Mathematics Science;2023-06-30

2. Impact of Genetic Algorithm for the Diagnosis of Breast Cancer: Literature Review;Advances in Infectious Diseases;2023

3. A Survey on Deep Learning Model for Improved Disease Prediction with Multi Medical Data Sets;2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC);2022-08-17

4. An Improved Multi-Label Learning Method with ELM-RBF and a Synergistic Adaptive Genetic Algorithm;Algorithms;2022-05-26

5. Medical model estimation with particle swarm optimization;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2021-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3