Bone Metastasis in Renal Cell Carcinoma Patients: Risk and Prognostic Factors and Nomograms

Author:

Fan Zhiyi12,Huang Zhangheng2,Huang Xiaohui1ORCID

Affiliation:

1. Hangzhou Medical College, Hangzhou, Zhejiang Province, China

2. Department of Spine Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, China

Abstract

Background. Bone metastasis (BM) is one of the common sites of renal cell carcinoma (RCC), and patients with BM have a poorer prognosis. We aimed to develop two nomograms to quantify the risk of BM and predict the prognosis of RCC patients with BM. Methods. We reviewed patients with diagnosed RCC with BM in the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2015. Multivariate logistic regression analysis was used to determine independent factors to predict BM in RCC patients. Univariate and multivariate Cox proportional hazards regression analyses were used to determine independent prognostic factors for BM in RCC patients. Two nomograms were established and evaluated by calibration curve, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). Results. The study included 37,554 patients diagnosed with RCC in the SEER database, 537 of whom were BM patients. BM’s risk factors included sex, tumor size, liver metastasis, lung metastasis, brain metastasis, N stage, T stage, histologic type, and grade in RCC patients. Currently, independent prognostic factors for RCC with BM included grade, histologic type, N stage, surgery, brain metastasis, and lung metastasis. The calibration curve, ROC curve, and DCA showed good performance for diagnostic and prognostic nomograms. Conclusions. Nomograms were established to predict the risk of BM in RCC and the prognosis of RCC with BM, separately. These nomograms strengthen each patient’s prognosis-based decision making, which is critical in improving the prognosis of patients.

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3