Extraction and Visualization of Ocular Blood Vessels in 3D Medical Images Based on Geometric Transformation Algorithm

Author:

Zhang Zhike1,Zhang Shuixin2,Feng Hongyu3ORCID

Affiliation:

1. Department of Ophthalmology, China-Japan Friendship Hospital, Beijing 100029, China

2. Department of Traditional Chinese Medicine, Haidian Traditional Chinese Medical Hospital, Beijing 100080, China

3. Henan Institute of Science and Technology, Xinxiang 453003, Henan, China

Abstract

Data extraction and visualization of 3D medical images of ocular blood vessels are performed by geometric transformation algorithm, which first performs random resonance response in a global sense to achieve detection of high-contrast coarse blood vessels and then redefines the input signal as a local image shielding the global detection result to achieve enhanced detection of low-contrast microfine vessels and complete multilevel random resonance segmentation detection. Finally, a random resonance detection method for fundus vessels based on scale decomposition is proposed, in which the images are scale decomposed, the high-frequency signals containing detailed information are randomly resonantly enhanced to achieve microfine vessel segmentation detection, and the final vessel segmentation detection results are obtained after fusing the low-frequency image signals. The optimal stochastic resonance response of the nonlinear model of neurons in the global sense is obtained to detect the high-grade intensity signal; then, the input signal is defined as a local image with high-contrast blood vessels removed, and the parameters are optimized before the detection of the low-grade intensity signal. Finally, the multilevel random resonance response is fused to obtain the segmentation results of the fundus retinal vessels. The sensitivity of the multilevel segmentation method proposed in this paper is significantly improved compared with the global random resonance results, indicating that the method proposed in this paper has obvious advantages in the segmentation of vessels with low-intensity levels. The image library was tested, and the experimental results showed that the new method has a better segmentation effect on low-contrast microscopic blood vessels. The new method not only makes full use of the noise for weak signal detection and segmentation but also provides a new idea of how to achieve multilevel segmentation and recognition of medical images.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3