Selecting the Best Routing Traffic for Packets in LAN via Machine Learning to Achieve the Best Strategy

Author:

Zhang Bo1ORCID,Liao Rongji1

Affiliation:

1. School of Information and Communication Engineering, Communication University of China, Beijing, China

Abstract

The application of machine learning touches all activities of human behavior such as computer network and routing packets in LAN. In the field of our research here, emphasis was placed on extracting weights that would affect the speed of the network's response and finding the best path, such as the number of nodes in the path and the congestion on each path, in addition to the cache used for each node. Therefore, the use of these elements in building the neural network is worthy, as is the exploitation of the feed forwarding and the backpropagation in the neural network in order to reach the best prediction for the best path. The goal of the proposed neural network is to minimize the network time delay within the optimization of the packet paths being addressed in this study. The shortest path is considered as the key issue in routing algorithm that can be carried out with real time of path computations. Exploiting the gaps in previous studies, which are represented in the lack of training of the system and the inaccurate prediction as a result of not taking into consideration the hidden layers' feedback, leads to great performance. This study aims to suggest an efficient algorithm that could help in selecting the shortest path to improve the existing methods using weights derived from packet ID and to change neural network iteration simultaneously. In this study, the design of the efficient neural network of appropriate output is discussed in detail including the principles of the network. The findings of the study revealed that exploiting the power of computational system to demonstrate computer simulation is really effective. It is also shown that the system achieved good results when training the neural network system to get 2.4% time delay with 5 nodes in local LAN. Besides, the results showed that the major features of the proposed model will be able to run in real time and are also adaptive to change with path topology.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Dynamic Packet Scheduling Algorithm Based on Active Flows for Enhancing the Performance of Internet Traffic;Intelligent Data Communication Technologies and Internet of Things;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3