Incentives against Max-Min Fairness in a Centralized Resource System

Author:

Chen Zheng1ORCID,Gu Zhaoquan2ORCID,Wang Yuexuan1ORCID

Affiliation:

1. College of Computer Science and Technology, Zhejiang University, Hangzhou, China

2. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China

Abstract

Resource allocating mechanisms draw much attention from various areas, and exploring the truthfulness of these mechanisms is a very hot topic. In this paper, we focus on the max-min fair allocation in a centralized resource system and explore whether the allocation is truthful when a node behaves strategically. The max-min fair allocation enables nodes receive appropriate resources, and we introduce an efficient algorithm to find out the allocation. To explore whether the allocation is truthful, we analyze how the allocation varies when a new node is added to the system, and we discuss whether the node can gain more resources if it misreports its resource demands. Surprisingly, if a node misrepresents itself by creating several fictitious nodes but keeps the sum of these nodes’ resource demands the same, the node can achieve more resources evidently. We further present some illustrative examples to verify the results, and we show that a node can achieve 1.83 times resource if it misrepresents itself as two nodes. Finally, we discuss the influence of node’s misrepresenting behavior in tree graph: some child nodes gain fewer resources even if their parent node gains more resources by creating two fictitious nodes.

Funder

Guangzhou Higher Education Innovation Group

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference32 articles.

1. The problem of fair division;Steinhaus;Econometrica,1948

2. Truth, justice, and cake cutting

3. Deterministic, Strategyproof, and Fair Cake Cutting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3