Brittleness Index of High-Rank Coal Reservoir and Its Influencing Factors in Mabidong Block, Qinshui Basin, China

Author:

Zhang Yixuan12,Meng Yanjun12ORCID,Hao Panyun3,Shang Yanjie4,Fu Xinyu12

Affiliation:

1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Shanxi Key Laboratory of Coal and Coal Measure Gas Geology, Taiyuan 030024, China

3. No. 213 Laboratory of Shanxi Bureau of Geology and Mineral Resources, Linfen 041000, China

4. PetroChina Coalbed Methane Co., Ltd., Beijing 100028, China

Abstract

Brittleness index is an important mechanical index to evaluate the fracturability of conventional oil and gas reservoirs. However, the brittleness index of an organic coal reservoir is more complex. In this study, based on array sonic logging and density logging data, coal brittleness index is calculated using an elastic parameter method in the Mabidong coalbed methane (CBM) block in southern Qinshui Basin. In combination with coal-body structure observation, the maceral analysis, and proximate data of coal cores, a comprehensive study of geological influencing factors of coal brittleness index has been carried out. According to coal fragmentation degree, the coal-body structure of coal seams can be divided into primary, cataclastic, and granulate structure. The average interval of brittleness index of primary, cataclastic, and granulate structural coals is 63.3-71.48, 73.01-74.85, and 77.41-82.77, respectively. The results indicate that generally the order of brittleness index is primary structural coal < cataclastic structural coal < granulate structural coal. Young’s modulus and the brittleness index have a good positive correlation. Poisson’s ratio and the brittleness index are negatively correlated in No. 3 coal seam but are positive correlated in No. 15 coal seam. The vitrinite content is positively correlated with brittleness index, and the inertinite content is negatively correlated. For the primary and cataclastic structure coal, the ash and volatile is positively correlated with the brittleness index. The correlation of brittleness index, macerals, and coal quality parameters in the primary structure coal is better than that of the cataclastic and granulate structure coal. The research results are helpful to guide the coal brittleness index and coal-body structure prediction in fracturing of CBM wells.

Funder

China United Coalbed Methane Co., Ltd

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3