Traffic and Energy Aware Optimization for Congestion Control in Next Generation Wireless Sensor Networks

Author:

Yadav Saneh Lata1,Ujjwal R. L.1,Kumar Sushil2ORCID,Kaiwartya Omprakash3ORCID,Kumar Manoj2,Kashyap Pankaj Kumar2

Affiliation:

1. School of Information, Communication & Technology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India

2. School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India

3. Department of Computer Science, Nottingham Trent University, Nottingham NG11 8NS, UK

Abstract

Congestion in wireless sensor networks (WSNs) is an unavoidable issue in today’s scenario, where data traffic increased to its aggregated capacity of the channel. The consequence of this turns in to overflowing of the buffer at each receiving sensor nodes which ultimately drops the packets, reduces the packet delivery ratio, and degrades throughput of the network, since retransmission of every unacknowledged packet is not an optimized solution in terms of energy for resource-restricted sensor nodes. Routing is one of the most preferred approaches for minimizing the energy consumption of nodes and enhancing the throughput in WSNs, since the routing problem has been proved to be an NP-hard and it has been realized that a heuristic-based approach provides better performance than their traditional counterparts. To tackle all the mentioned issues, this paper proposes an efficient congestion avoidance approach using Huffman coding algorithm and ant colony optimization (ECA-HA) to improve the network performance. This approach is a combination of traffic-oriented and resource-oriented optimization. Specially, ant colony optimization has been employed to find multiple congestion-free alternate paths. The forward ant constructs multiple congestion-free paths from source to sink node, and backward ant ensures about the successful creation of paths moving from sink to source node, considering energy of the link, packet loss rate, and congestion level. Huffman coding considers the packet loss rate on different alternate paths discovered by ant colony optimization for selection of an optimal path. Finally, the simulation result presents that the proposed approach outperforms the state of the art approaches in terms of average energy consumption, delay, and throughput and packet delivery ratio.

Funder

SC&SS, Jawaharlal Nehru University, New Delhi

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3