Artificial Intelligence-Guided Subspace Clustering Algorithm for Glioma Images

Author:

Zhang Yong1ORCID,Zhou Yu-mei2,Liao Zhen-hong1,Liu Gao-yuan1,Guo Kai-can1

Affiliation:

1. Department of Radiology, People’s Hospital of Deyang City, Deyang City, Sichuan 618000, China

2. Outpatient Department, People’s Hospital of Deyang City, Deyang City, Sichuan 618000, China

Abstract

In order to improve the accuracy of glioma segmentation, a multimodal MRI glioma segmentation algorithm based on superpixels is proposed. Aiming at the current unsupervised feature extraction methods in MRI brain tumor segmentation that cannot adapt to the differences in brain tumor images, an MRI brain tumor segmentation method based on multimodal 3D convolutional neural networks (CNNs) feature extraction is proposed. First, the multimodal MRI is oversegmented into a series of superpixels that are uniform, compact, and exactly fit the image boundary. Then, a dynamic region merging algorithm based on sequential probability ratio hypothesis testing is applied to gradually merge the generated superpixels to form dozens of statistically significant regions. Finally, these regions are postprocessed to obtain the segmentation results of each organization of GBM. Combine 2D multimodal MRI images into 3D original features and extract features through 3D-CNNs, which is more conducive to extracting the difference information between the modalities, removing redundant interference information between the modalities, and reducing the original features at the same time. The size of the neighborhood can adapt to the difference of tumor size in different image layers of the same patient and further improve the segmentation accuracy of MRI brain tumors. The experimental results prove that it can adapt to the differences and variability between the modalities of different patients to improve the segmentation accuracy of brain tumors.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3