Momordica Charantia Polysaccharides Attenuates MPP+-Induced Injury in Parkinson’s Disease Mice and Cell Models by Regulating TLR4/MyD88/NF-κB Pathway

Author:

Guo Dengjun1ORCID,Zhou Jie2,Zhang Meng3,Taximaimaiti Reyisha4,Wang Xiaoping4ORCID,Wang Hai3ORCID

Affiliation:

1. Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province 310012, China

2. Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province 310012, China

3. Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province 310012, China

4. Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University Medical School, Shanghai 200336, China

Abstract

Objective. To investigate the potential role of Momordica charantia polysaccharides (MCPs) in Parkinson’s disease (PD) and reveal the molecular mechanism of its function. Method. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (1-methyl-4-phenylpyridinium, MPP+) were used to establish PD mice and cell models. The mice and cells were divided into 4 groups: Control group, Control+MCPs group, PD group, and PD+MCPs group. Pole climbing experiment and Rotarod experiment were used to observe the coordination ability of mice. High-performance liquid chromatography and enzyme-linked immunosorbent assay (ELISA) were used to determine neurotransmitters and metabolites, inflammatory factors TNF-α and IL-1β, oxidative stress-related markers SOD, MDA, and GSH in striatum tissues. Western blot was used to determine the protein levels of tyrosine hydroxylase (TH), oxidative stress-related protein Cytochrome C (Cytochrome C), and apoptosis-related proteins Bcl-2, Bax, and cleaved Caspase-3 in tissues and cells. Moreover, flow cytometry, PI staining, and fluorescence were used to observe cell apoptosis. Finally, the activation effect of MCPs on TLR4/MyD88/NF-κB signaling pathway was observed and verified. Results. Compared with the Control group, MPTP treatment can induce brain damage in mice (all P < 0.05 ), change the metabolic state of neurotransmitters (all P < 0.05 ), induce inflammation (all P < 0.05 ), and induce apoptosis and the occurrence of oxidation reaction (all P < 0.05 ); however, MCPs treatment can significantly reverse the above changes (all P < 0.05 ). In cell models, studies have found that MCPs can play a protective role by regulating the activation state of TLR4/MyD88/NF-κB pathway. Conclusion. This study found that the application of MCPs therapy can play anti-inflammatory, antioxidative stress, and antiapoptotic effects in PD by regulating the activation of the TLR4/MyD88/NF-κB pathway.

Funder

Public Welfare Project of Zhejiang Science and Technology Department

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3