Analysis and Prediction of CET4 Scores Based on Data Mining Algorithm

Author:

Wang Hongyan1ORCID

Affiliation:

1. School of Foreign Languages, Xi’an University of Finance and Economics, Xi’an 710000, China

Abstract

This paper presents the concept and algorithm of data mining and focuses on the linear regression algorithm. Based on the multiple linear regression algorithm, many factors affecting CET4 are analyzed. Ideas based on data mining, collecting history data and appropriate to transform, using statistical analysis techniques to the many factors influencing the CET-4 test were analyzed, and we have obtained the CET-4 test result and its influencing factors. It was found that the linear regression relationship between the degrees of fit was relatively high. We further improve the algorithm and establish a partition-weighted K-nearest neighbor algorithm. The K-weighted K nearest neighbor algorithm and the partition algorithm are used in the CET-4 test score classification prediction, and the statistical method is used to study the relevant factors that affect the CET-4 test score, and screen classification is performed to predict when the comparison verification will pass. The weight K of the input feature and the adjacent feature are weighted, although the allocation algorithm of the adjacent classification effect has not been significantly improved, but the stability classification is better than K-nearest neighbor algorithm, its classification efficiency is greatly improved, classification time is greatly reduced, and classification efficiency is increased by 119%. In order to detect potential risk graduating students earlier, this paper proposes an appropriate and timely early warning and preschool K-nearest neighbor algorithm classification model. Taking test scores or make-up exams and re-learning as input features, the classification model can effectively predict ordinary students who have not graduated.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3