Affiliation:
1. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
2. Changsha Information Research Institute, Hunan Great Wall Technology Information Company Limited, Changsha 410000, China
Abstract
Multiperson activity recognition is a pivotal branch as well as a challenging topic of human action recognition research. This paper adopts a hybrid learning model to the spatio-temporal relationship and occlusion relationship among multiple people. Initially, this paper builds up an active multiperson interaction relationship estimation framework model to capture interpersonal spatio-temporal relation. This model incorporates the interaction relationship estimation framework with the multiperson relationship network. On this ground, it automatically learns from the human-computer interaction dataset in an end-to-end manner and performs reasoning with standard matrix operations. Secondly, this paper proposed an adaptive occlusion state behavior recognition method derived from the semantic knowledge model to ravel out the concern of occlusion and self-occlusion in human action recognition. Then, Petri Nets are used to recognize multiperson interactive actions. This model has been through extensive experiments on the TV interaction dataset, Vlog dataset, AVA dataset, and MLB-YouTube dataset, experimental results have proved that the recognition performance of this model is superior than the other available models. This paper prospects and summarizes the estimation framework of the interaction relationship and occlusion semantic-knowledge relationship. Experimental results suggest that the proposed method in the paper could capture the discriminative relation information for multiperson interactive activity recognition, which further validates the efficiency of the hybrid learning model.
Funder
Science and Technology Department of Jiangxi Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献