A New Algorithm for Sketch-Based Fashion Image Retrieval Based on Cross-Domain Transformation

Author:

Lei Haopeng1,Chen Simin1ORCID,Wang Mingwen1,He Xiangjian2,Jia Wenjing2,Li Sibo1

Affiliation:

1. School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China

2. School of Electrical and Data Engineering, University of Technology Sydney, Sydney NSW 2007, Australia

Abstract

Due to the rise of e-commerce platforms, online shopping has become a trend. However, the current mainstream retrieval methods are still limited to using text or exemplar images as input. For huge commodity databases, it remains a long-standing unsolved problem for users to find the interested products quickly. Different from the traditional text-based and exemplar-based image retrieval techniques, sketch-based image retrieval (SBIR) provides a more intuitive and natural way for users to specify their search need. Due to the large cross-domain discrepancy between the free-hand sketch and fashion images, retrieving fashion images by sketches is a significantly challenging task. In this work, we propose a new algorithm for sketch-based fashion image retrieval based on cross-domain transformation. In our approach, the sketch and photo are first transformed into the same domain. Then, the sketch domain similarity and the photo domain similarity are calculated, respectively, and fused to improve the retrieval accuracy of fashion images. Moreover, the existing fashion image datasets mostly contain photos only and rarely contain the sketch-photo pairs. Thus, we contribute a fine-grained sketch-based fashion image retrieval dataset, which includes 36,074 sketch-photo pairs. Specifically, when retrieving on our Fashion Image dataset, the accuracy of our model ranks the correct match at the top-1 which is 96.6%, 92.1%, 91.0%, and 90.5% for clothes, pants, skirts, and shoes, respectively. Extensive experiments conducted on our dataset and two fine-grained instance-level datasets, i.e., QMUL-shoes and QMUL-chairs, show that our model has achieved a better performance than other existing methods.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-modality sub-image retrieval using contrastive multimodal image representations;Scientific Reports;2024-08-13

2. A Survey on Fashion Image Retrieval;ACM Computing Surveys;2024-01-22

3. Cross-domain image retrieval: methods and applications;International Journal of Multimedia Information Retrieval;2022-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3