Inhibition Effect of Zoledronate on the Osteoclast Differentiation of RAW264.7 Induced by Titanium Particles

Author:

Zhao Wenhan1ORCID,Huang Zhusong1ORCID,Lin Yu1ORCID,Lan Jinfu1ORCID,Gao Xi1ORCID

Affiliation:

1. Department of Orthopaedics, Fuzhou Second Hospital affiliated to Xiamen University, Fujian Province 350007, China

Abstract

Objective. This study is aimed at studying the effect of zoledronate (ZOL) on the differentiation of osteoclast precursor RAW264.7 cells induced by titanium (Ti) particles and explores the possibility of preventing and treating periprosthetic osteoporosis using ZOL. Methods. RAW264.7 cells were cultured in vitro. Ti particles were prepared. The cell proliferation curve of RAW264.7 cells was plotted using the MTT assay to find the best concentration of ZOL for intervention. The cells were divided into three groups: control, Ti particles, and Ti particles+ZOL. The cell morphology was observed using tartaric acid–resistant acid phosphatase (TRAP) staining, and the activity of TRAP in cell supernatant was determined using the biochemical method. The number of bone resorption lacunae was detected using toluidine blue staining. The mRNA expression of RANK, NFATcl, CAII, and MMP-9 was detected using real-time polymerase chain reaction. The protein expression of RANK, NFATcl, and MMP-9 was detected using Western blot analysis. Results. Ti particles stimulated the differentiation of RAW264.7 cells into osteoclasts. They also increased the activity of TRAP, number of bone resorption lacunae, and mRNA and protein expression of RANK, NFATcl, and MMP-9. However, ZOL could suppress the effect of TI particles on the osteoclast differentiation of RAW264.7 cells. Conclusions. ZOL could effectively inhibit the differentiation of RAW264.7 cells into osteoclasts induced by Ti particles, decrease the activity of TRAP, reduce the number of bone resorption lacunae, and decrease the mRNA and protein expression of RANK, NFATcl, and MMP-9. Hence, it may be a promising candidate for preventing and treating periprosthetic osteoporosis after the artificial joint operation.

Funder

Fuzhou Health system Science and Technology Project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3