Casing Collapse Strength Analysis under Nonuniform Loading Using Experimental and Numerical Approach

Author:

Li Dongfeng12,Yu Fu3,Fan Heng4ORCID,Wang Rui2,Yang Shangyu2,Yan Xiangzhen1

Affiliation:

1. College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China

2. CNPC Tubular Goods Research Institute, Xi’an 710077, Shaanxi, China

3. Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

4. School of Electronic Engineering, Xi’an Shiyou University, Xi’an 710077, Shanxi, China

Abstract

Multistage fracturing is the main means of shale gas development, and casing deformation frequently occurs during fracturing of shale gas horizontal wells. Fracturing fluid entering the formation will change in situ stress nearby the wellbore. The changes of in situ stress are mainly reflected in the following two aspects: one is the increase of in situ stress and the other is the nonuniformity of in situ stress along the wellbore. And it is for this reason that the production casing is more likely to collapse under the nonuniform in situ stress load. According to the service conditions of production casing in shale gas reservoir, this paper studied the casing deformation and the collapsing strength subjected to the nonuniform loading by the experimental and numerical simulation method. The results show that under the condition of nonuniform loading, (1) the diameter variation rate of the casing reduces with the increase in the ratio of sample to tooling length. When the ratio is less than 3, the casing collapse strength will be significantly reduced. And when the ratio is greater than 6, the impact of sample length on casing collapse strength can be ignored. (2) The increase in the applied loading angle will decrease the diameter variation rate. When the loading angle increases from 0° to 90°, the critical load value increases from 1600 kN to 4000 kN. (3) The increase in load unevenness coefficient will rapidly decrease the casing collapse strength. When the load unevenness coefficient n is 0.8, the casing collapse strength reduces to 60%, and when the load unevenness coefficient n is 0, the casing collapse strength reduces to 28%. The findings of this study can help for better understanding of casing damage mechanism in volume fracturing of shale gas horizontal well and guide the selection of multistage fracturing casing type and fracturing interval design.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3