Affiliation:
1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China
Abstract
In this paper, we study the resource allocation for simultaneous wireless information and power transfer (SWIPT) systems with the nonlinear energy harvesting (EH) model. A simple optimal resource allocation scheme based on the time slot switching is proposed to maximize the average achievable rate for the SWIPT systems. The optimal resource allocation is formulated as a nonconvex optimization problem, which is the combination of a series of nonconvex problems due to the binary feature of the time slot-switching ratio. The optimal problem is then solved by using the time-sharing strong duality theorem and Lagrange dual method. It is found that with the proposed optimal resource allocation scheme, the receiver should perform EH in the region of medium signal-to-noise ratio (SNR), whereas switching to information decoding (ID) is performed when the SNR is larger or smaller. The proposed resource allocation scheme is compared with the traditional time switching (TS) resource allocation scheme for the SWIPT systems with the nonlinear EH model. Numerical results show that the proposed resource allocation scheme significantly improves the system performance in energy efficiency.
Funder
Guangzhou Science and Technology Program key projects
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献