Vehicle-Mounted Photovoltaic System Energy Management in Intelligent Transportation Systems: A Maximum Power Point Tracking Control

Author:

Wang Jingao1,Liu Qifei1ORCID,Jing Silan2

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

2. College of Business Administration, Northeastern University, Shenyang, Liaoning 110819, China

Abstract

Electric vehicles have become the main contributor in terms of reducing fuel consumption and CO2 emission. Although the government is vigorously promoting the use of electric vehicles worldwide, the range anxiety still impedes the rapid development of electric vehicles, especially when air-conditioning also adds battery power consumption and aggravates the range anxiety. To this end, this paper proposes an improved vehicle-mounted photovoltaic system energy management in intelligent transportation systems, which is a maximum power point tracking control system. Meanwhile, since the power of solar panels is usually relatively small and the power changes at any time, low power density and poor controllability are difficult to avoid. In order to solve this problem, this paper offers a tracking control method to improve the output efficiency of solar panels. For improving photovoltaic conversion efficiency and maximizing output power, traditional photovoltaic power panels are often dominated by a centralized maximum power point tracing control, which is named MPPT. Although the cost under this case is lower, the output power of all photovoltaic panels cannot be maximized under the condition of uneven illumination or local mismatch. To improve the situation, a micro-scale inverter is proposed to provide MPPT control of photovoltaic modules, which can effectively improve the output power of each photovoltaic panel. Moreover, our MPPT algorithm is applicable to cloud shadow, building shadow, and shade, and it is more suitable for the car roof. Firstly, the Diode 5-parameter model is used to deduce the I-U equation of the photovoltaic module considering shadow shading, and then the real-time 5 parameter equation is formed by using the measured data group and selected. The reasonable initial value is used to iteratively solve the real-time value of 5 parameters, which is further to judge the masking situation. The maximum power point (MPP) is solved directly by the mathematical method based on the mathematical model of I-U relation mathematics, and the DC-DC circuit is used to adjust the running point to MPP. Unlike the traditional MPPT method, the method in this paper is based on the physical model of solar cells, and MPP tracking is based on mathematical methods. Based on this, it does not need to cause multiple interference to the circuit, and the tracking efficiency is high. Finally, the relative experimental results are provided to verify the performance of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3