A Diagnostic Analysis Workflow to Optimal Multiple Tumor Markers to Predict the Nonmetastatic Breast Cancer from Breast Lumps

Author:

Jiang Nan12345,Tian Tian12346,Chen Xianyang78,Zhang Guofen5,Pan Lijie5,Yan Chengping5,Yang Guoshan5,Wang Lili9,Cao Xuchen1234,Wang Xin1234ORCID

Affiliation:

1. The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China

2. Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China

3. Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China

4. Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China

5. Department of General Surgery, First Hospital of Tsinghua University, Beijing 100016, China

6. Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China

7. Bao Feng Biotech (Beijing) Co., Ltd., Beijing, China

8. ZhongYuan BoRui Biotech (Zhuhai Hengqin) Co., Ltd., Zhuhai, China

9. Department of Laboratory Medicine, First Hospital of Tsinghua University, Beijing 100016, China

Abstract

Objective. To assess the diagnostic performance of clinically common single markers and combinations to distinguish nonmetastatic breast cancer and benign breast tumor. A predictive model with a better diagnostic ability for nonmetastatic breast cancer was established by using the diagnostic process. Methods. A total of 222 patients with nonmetastatic breast cancer and 265 patients with benign breast disease were enrolled in this study. CEA, Ca 15-3, Ca 125, Ca 72-4, CYFRA 21-1, FERR, AFP, and NSE were measured by an electrochemiluminescent immunoenzymometric assay on the Elecsys system. There are four key steps for our diagnostic workflow, that is, feature selection, algorithm selection, parameter optimization, and outer test data was used to validate the optimal algorithm and markers. Results. CEA, Ca 15-3, CYFRA 21-1, AFP, and FERR were selected using the t-test in our inner development set. The optimal algorithm among logical regression, decision tree, support vector machine, random forest, and gradient boost machine was selected by 10-fold cross-validation, and we found that random forest and logistic regression are the better classification. The outer test data was used to validate the best markers and classification. The random forest with CEA, Ca 15-3, CYFRA 21-1, AFP, and FERR showed the optimal combination for distinguishing breast cancer and benign breast disease. The AUC value was 0.888, the cut-off point was 0.484, and sensitivity and specificity were 78.9% and 90.1%. Conclusions. No single marker of these eight markers was good at identifying nonmetastatic breast cancer from benign tumors. But a diagnostic analysis workflow was established to develop a predictive model with better diagnostic capability for nonmetastatic breast cancer. This workflow is also applicable to the optimization of other disease markers and diagnostic models. The predictive model showed good diagnostic performance, and it could be gradually incorporated as a support method for the diagnosis of nonmetastatic breast cancer.

Publisher

Hindawi Limited

Subject

Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3