Numerical Simulation Study of Variable-Mass Permeation of the Broken Rock Mass under Different Cementation Degrees

Author:

Li Chong1,Yao Banghua23ORCID,Ma Qingqing2

Affiliation:

1. School of Mines, Key Laboratory of Deep Coal Resource Mining, Ministry of Education, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China

2. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China

3. Collaborative Innovation Center of CoalWork Safety, Jiaozuo, Henan 454000, China

Abstract

In order to analyze variable-mass permeation characteristics of broken rock mass under different cementation conditions and reveal the water inrush mechanism of geological structures containing broken rock masses like karst collapse pillars (KCPs) in the coal mine, the EDEM-FLUENT coupling simulation system was used to implement a numerical simulation study of variable-mass permeation of broken rock mass under different cementation conditions and time-dependent change laws of parameters like porosity, permeability, and mass loss rate of broken rock specimens under the erosion effect were obtained. Study results show that (1) permeability change of broken rock specimens under the particle migration effect can be divided into three phases, namely, the slow-changing seepage phase, sudden-changing seepage phase, and steady seepage phase. (2) Specimen fillings continuously migrate and run off under the water erosion effect, porosity and permeability rapidly increase and then tend to be stable, and the mass loss rate firstly rapidly increases and then gradually decreases. (3) Cementation degree has an important effect on permeability of broken rock mass. As cementing force of the specimen is enhanced, its maximum mass loss rate, mass loss, porosity, and permeability all continuously decrease. The study approach and results not only help enhance coal mining operations safety by better understanding KCP water inrush risks. It can also be extended to other engineering applications such as backfill paste piping and tailing dam erosion.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3