Self-Consolidation Mechanism of Nanostructured Ti5Si3Compact Induced by Electrical Discharge

Author:

Lee W. H.1,Cheon Y. W.1,Jo Y. H.1,Seong J. G.1,Jo Y. J.1,Kim Y. H.2,Noh M. S.3,Jeong H. G.3,Van Tyne C. J.4,Chang S. Y.5

Affiliation:

1. Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143-747, Republic of Korea

2. Department of Dental Laboratory Technology, Wonkwang Health Science University, Iksan 570-750, Republic of Korea

3. Center for SCINOVATOR, Posung High School, Seoul 138-829, Republic of Korea

4. Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA

5. Department of Materials Engineering, Korea Aerospace University, Goyang-si 412-791, Republic of Korea

Abstract

Electrical discharge using a capacitance of 450 μF at 7.0 and 8.0 kJ input energies was applied to mechanical alloyed Ti5Si3powder without applying any external pressure. A solid bulk of nanostructured Ti5Si3with no compositional deviation was obtained in times as short as 159 μsec by the discharge. During an electrical discharge, the heat generated is the required parameter possibly to melt the Ti5Si3particles and the pinch force can pressurize the melted powder without allowing the formation of pores. Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3compact. Three stepped processes during an electrical discharge for the formation of nanostructured Ti5Si3compact are proposed: (a) a physical breakdown of the surface oxide of Ti5Si3powder particles, (b) melting and condensation of Ti5Si3powder by the heat and pinch pressure, respectively, and (c) rapid cooling for the preservation of nanostructure. Complete conversion yielding a single phase Ti5Si3is primarily dominated by the solid-liquid mechanism.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3