Enhanced Photocatalytic Activity of TiO2/SnO2 Binary Nanocomposites

Author:

Dontsova Tetiana A.1ORCID,Kutuzova Anastasiya S.1,Bila Kateryna O.1,Kyrii Svitlana O.1,Kosogina Iryna V.1ORCID,Nechyporuk Daria O.1

Affiliation:

1. Department of Inorganic Substances, Water Purification and General Chemical Technology, Chemical Technology Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056, Prosp. Peremohy 37, Kyiv, Ukraine

Abstract

The paper presents the results of characterization and study of adsorption-photocatalytic properties of commercial and synthesized-by-hydrothermal method TiO2 and TiO2-SnO2 nanocomposites. Hydrothermal synthesis of TiO2-based nanocomposites was performed in two ways: single-stage and two-stage methods. Characterization was carried out by XRD, X-ray fluorescence method, XPS, EPR, PL, and low-temperature adsorption-desorption of nitrogen, which showed that TiO2-SnO2 nanostructured composites were obtained with tin(IV) oxide content of 10 wt.% and had acidic surface and different porous structures. Besides, modification of a commercial sample with tin(IV) oxide led to a slight decrease in the specific surface area, while modification of a synthesized-by-hydrothermal method TiO2 sample led to an increase. It was found that sorption properties of the obtained nanocomposites and pure TiO2 are better towards anionic dyes. Photocatalytic activity, on the contrary, is higher towards cationic dyes, which is consistent with additional studies on the destruction of these dyes. It was established that in terms of photocatalytic activity, TiO2-SnO2 nanocomposites are more promising than solid solutions, and modification of TiO2 with tin(IV) oxide, in general, leads to improvement of its photocatalytic activity.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3