Exploratory Study on Screening Chronic Renal Failure Based on Fourier Transform Infrared Spectroscopy and a Support Vector Machine Algorithm

Author:

Yuan Yushuai1,Yang Li2,Gao Rui12,Chen Cheng1,Li Min3,Tang Jun4,Lv Xiaoyi1ORCID,Yan Ziwei1ORCID

Affiliation:

1. College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

2. The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China

3. College of Software, Xinjiang University, Urumqi 830046, China

4. Physics and Chemistry Detecting Center, Xinjiang University, Urumqi 830046, China

Abstract

Chronic renal failure (CRF) is a clinically serious kidney disease. If the patient is not treated in a timely manner, CRF will develop into uremia. However, current diagnostic methods, such as routine blood examinations and medical imaging, have low sensitivity. Therefore, it is important to explore new and effective diagnostic methods for CRF, such as serum spectroscopy. This study proposes a cost-effective and reliable method for detecting CRF based on Fourier transform infrared (FT-IR) spectroscopy and a support vector machine (SVM) algorithm. We measured and analyzed the FT-IR spectra of serum from 44 patients with CRF and 54 individuals with normal renal function. The partial least squares (PLS) algorithm was applied to reduce the dimensionality of the high-dimensional spectral data. The samples were input into the SVM after division by the Kennard–Stone (KS) algorithm. Compared with other models, the SVM optimized by a grid search (GS) algorithm performed the best. The sensitivity of our diagnostic model was 93.75%, the specificity was 100%, and the accuracy was 96.97%. The results demonstrate that FT-IR spectroscopy combined with a pattern recognition algorithm has great potential in screening patients with CRF.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3