Numerical Predictions of the Incipient and Developed Interblade Vortex Lines of a Model Francis Turbine by Cavitation Calculations

Author:

Zuo Zhigang1,Liu Shuhong1,Liu Demin2,Qin Daqing3,Wu Yulin1

Affiliation:

1. State Key Laboratory of Hydro Science and Engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China

2. Research & Test Center, Dongfang Electric Machinery Co. Ltd, Deyang, Sichuan 618000, China

3. State Key Laboratory of Hydro-Power Equipment, Harbin, Heilongjiang 150040, China

Abstract

The existence of runner interblade vortices can cause instability problems in Francis turbines, for example, pressure fluctuations, vibrations of runners, noise, and so forth. It is favorable in engineering practice to have the knowledge of the appearance of the incipient and developed inter blade vortex lines on the Hill diagram in unit parameters. Most numerical research on the inter blade vortices has been focused on the study of the characteristics of pressure fluctuations by single-phase flow calculations. However, since the two vortex lines are distinguished by observations of visible vortices, which contain cavitating flows, it is clear that cavitation calculations are needed for their predictions. A method by solving RANS equations with RNG k – ∊ turbulence model and ZGB cavitation model was proposed for the predictions in a Francis model turbine. Modifications of the turbulence viscosity were made for better simulation results. Vorticity criterion was chosen to identify the vortices. The fact that the results of cavitation calculations have a better agreement with experimental observations than single-phase calculations proves the validity of this prediction method.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference15 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3