On-Board Computing for Structural Health Monitoring with Smart Wireless Sensors by Modal Identification Using Hilbert-Huang Transform

Author:

Wu Ning1,Liu Chengyin1,Guo Yukun1,Zhang Jianhua2

Affiliation:

1. Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China

2. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

Smart wireless sensors have been recognized as a promising technology to overcome many inherent difficulties and limitations associated with traditional wired structural health monitoring (SHM) systems. Despite the advances in smart sensor technologies, on-board computing capability of smart sensors has been considered as one of the most difficult challenges in the application of the smart sensors in SHM. Taking the advantage of recent developments in microprocessor which provides powerful on-board computing functionality for smart sensors, this paper presents a new decentralized data processing approach for modal identification using the Hilbert-Huang transform (HHT) algorithm, which is based on signal decomposition technique. It is shown that this method is suitable for implementation in the intrinsically distributed computing environment found in wireless smart sensor networks (WSSNs). The HHT-based decentralized data processing is, then, programmed and implemented on the Crossbow IRIS mote sensor platform. The effectiveness of the proposed techniques is demonstrated through a set of numerical studies and experimental validations on an in-house cable-stayed bridge model in terms of the accuracy of identified dynamic properties.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3