Design and Analysis of Sustainable and Seasonal Profit Scaling Model in Cloud Environment

Author:

Kumari Monika1ORCID,Sahoo G.1ORCID

Affiliation:

1. Department of Computer Science and Engineering, BIT Mesra, Ranchi, Jharkhand, India

Abstract

Cloud is a widely used platform for intensive computing, bulk storage, and networking. In the world of cloud computing, scaling is a preferred tool for resource management and performance determination. Scaling is generally of two types: horizontal and vertical. The horizontal scale connects users’ agreement with the hardware and software entities and is implemented physically as per the requirement and demand of the datacenter for its further expansion. Vertical scaling can essentially resize server without any change in code and can increase the capacity of existing hardware or software by adding resources. The present study aims at describing two approaches for scaling, one is a predator-prey method and second is genetic algorithm (GA) along with differential evolution (DE). The predator-prey method is a mathematical model used to implement vertical scaling of task for optimal resource provisioning and genetic algorithm (GA) along with differential evolution(DE) based metaheuristic approach that is used for resource scaling. In this respect, the predator-prey model introduces two algorithms, namely, sustainable and seasonal scaling algorithm (SSSA) and maximum profit scaling algorithm (MPSA). The SSSA tries to find the approximation of resource scaling and the mechanism for maximizing sustainable as well as seasonal scaling. On the other hand, the MPSA calculates the optimal cost per reservation and maximum sustainable profit. The experimental results reflect that the proposed logistic scaling-based predator-prey method (SSSA-MPSA) provides a comparable result with GA-DE algorithm in terms of execution time, average completion time, and cost of expenses incurred by the datacenter.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-organized and Self-sustainable Autoscaling for Scientific Workflow Application in Cloud Environment;Intelligent Technologies: Concepts, Applications, and Future Directions;2022

2. Energy‐aware autoscaling for scientific workflow in cloud environment;Concurrency and Computation: Practice and Experience;2021-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3