Unsteady 2D and 3D Navier-Stokes Solver with Application of Multigrid Scheme to Pressure Poisson Fractional Step on Arbitrary Unstructured Grids in Various Applications with Emphasis on Ship Motion

Author:

Pourmostafa Mehdi1,Ghadimi Parviz1ORCID

Affiliation:

1. Department of Marine Technology, Amirkabir University of Technology, Tehran, Iran

Abstract

A 3D unsteady computer solver is presented to compute incompressible Navier-Stokes equations combined with the volume of fraction (VOF) method on an arbitrary unstructured domain. This is done to simulate fluid flows in various applications, especially around a marine vessel. The Navier-Stokes solver is based on the fractional steps method coupled with a finite volume scheme and collocated grids by which velocity components and pressure fields are defined at the center of the control volume. However, the fluxes are defined at the midpoint on their corresponding cell faces. On the other hand, the CICSAM (Compressive Interface Capturing Scheme for Arbitrary Meshes) scheme is applied to capture the free surface. In the presented fractional step method, the pressure Poisson equation suffers from poor convergence rate by simple iterative methods like Successive Overrelaxation (SOR), especially in simulating complex geometrics like a ship with appendages. Therefore, to accelerate the convergence rate, an agglomeration multigrid method is applied on arbitrary moving mesh for solving pressure Poisson equation with two well-known cycles, V and W. In order to maintain accuracy, the geometry details should not change in grid coarsening procedure. Therefore, the boundary faces are assumed to be fixed in all grids level. This assumption requires nonstandard cells in coarsening procedures. To investigate the performance of the applied algorithm, various flows including one and two-phase flows are studied in two and three dimensions. It is found that the multigrid method can speed up the convergence rate of fractional step twofold. In most cases (not all), W cycle displays better performance. It is also concluded that the efficiency of the cycle depends on the number of meshes and complexity of the problem and this is mainly due to the data transferring between grids. Therefore, the type of cycle should be selected judiciously and carefully, while considering the mesh size and flow properties.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference45 articles.

1. A composite multigrid method for calculating unsteady incompressible flows in geometrically complex domains

2. A Multigrid Preconditioner for the Semiconductor Equations

3. LinP. T.Implicit time dependent calculations for compressible and incompressible flows on unstructured meshes1994Princeton, NJ, USADepartment of Mechanical and Aerospace Engineering, Princeton UniversityM. Sc. Thesis

4. Preconditioned Multigrid Methods for Unsteady Incompressible Flows

5. Two-Phase Flows on Interface Refined Grids Modeled with VOF, Staggered Finite Volumes, and Spline Interpolants

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3