Hybrid Renewable Power Generation for Modeling and Controlling the Battery Storage Photovoltaic System

Author:

Mustafa Mohd1ORCID,Anandhakumar G.2ORCID,Jacob Anju Anna3ORCID,Singh Ngangbam Phalguni4ORCID,Asha S.5ORCID,Jayadhas S. Arockia6ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105 Tamil Nadu, India

2. Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105 Tamil Nadu, India

3. School of Engineering, Emirates Aviation University, Dubai, UAE

4. Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, KL Deemed to be University, Vaddeswaram, Andhra Pradesh, India

5. Department of Electronics and Communication Engineering, Saveetha Engineering College, Chennai, 602 105 Tamil Nadu, India

6. Department of EECE St. Joseph University in Tanzania, Tanzania

Abstract

A major portion of the global energy demand was likely to be fulfilled by an extensive supply of renewable power. Renewable energy outputs, on the other hand, are changeable due to the dynamic nature of their sources. The integration of these variable sources of power into current power grids is proving difficult for electrical power system operators all around the world. The fundamental issue with renewable energy systems is that, due to the stochastic nature of renewable power, electricity production varies from period to period. Recent research and development on renewable technologies can ensure the islands’ long-term electricity supply. Renewable energy sources, on the other hand, are limited by their unpredictable nature and significant reliance on weather conditions. To offset this disadvantage, several renewable energy sources and converters must be joined. To balance the power generation and load power, a hybrid renewable power generation for standalone application is proposed. The solar plant model is made up of a 170 W photovoltaic (PV) panel connected in series, and conversion of energy is done using the maximum power point tracking (MPPT) algorithm, which regulates a buck-boost converter modulation. The MPPT method used in the converter’s control step is based on perturb and observe (P&O) and enhanced with a PI controller. The bidirectional buck-boost DC-DC converters (BBDC) are utilized to preserve a DC-link voltage stable. This is also storing additional hybrid energy in a large battery and is distributed to the system load; then there is a shortage of hybrid power. The load current power is regulated in terms of the frequency and enables it to be achieved using three vector control technique voltage source inverters (VSI). The results were offered to demonstrate a hybrid performance of this organization.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3