Accuracy of Ultrasound Diagnosis of Thyroid Nodules Based on Artificial Intelligence-Assisted Diagnostic Technology: A Systematic Review and Meta-Analysis

Author:

Xue Yu12ORCID,Zhou Ying12ORCID,Wang Tingrui12ORCID,Chen Huijuan12,Wu Lingling12,Ling Huayun12,Wang Hong12,Qiu Lijuan12,Ye Dongqing12,Wang Bin12ORCID

Affiliation:

1. Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China

2. Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China

Abstract

Background. Ultrasonography (US) is the most common method of identifying thyroid nodules, but US images require an experienced surgeon for identification. Many artificial intelligence (AI) techniques such as computer-aided diagnostic systems (CAD), deep learning (DL), and machine learning (ML) have been used to assist in the diagnosis of thyroid nodules, but whether AI techniques can improve the diagnostic accuracy of thyroid nodules still needs to be explored. Objective. To clarify the accuracy of AI-based thyroid nodule US images for differentiating benign and malignant thyroid nodules. Methods. A search strategy of “subject terms + key words” was used to search PubMed, Cochrane Library, Embase, Web of Science, China Biology Medicine (CBM), and China National Knowledge Infrastructure (CNKI) for studies on AI-assisted diagnosis of thyroid nodules based on US images. The summarized receiver operating characteristic (SROC) curve and the pooled sensitivity and specificity were used to assess the performance of the diagnostic tests. The quality assessment of diagnostics accuracy studies-2 (QUADAS-2) tool was used to assess the methodological quality of the included studies. The Review Manager 5.3 and Stata 15 were used to process the data. Subgroup analysis was based on the integrity of data collection. Results. A total of 25 studies with 17,429 US images of thyroid nodules were included. AI-assisted diagnostic techniques had better diagnostic efficacy in the diagnosis of benign and malignant thyroid nodules: sensitivity 0.88 (95% CI: (0.85–0.90)), specificity 0.81 (95% CI: 0.74–0.86), diagnostic odds ratio (DOR) 30 (95% CI: 19–46). The SROC curve indicated that the area under the curve (AUC) was 0.92 (95% CI: 0.89–0.94). Threshold effect analysis showed a Spearman correlation coefficient: 0.17 < 0.5, suggesting no threshold effect for the included studies. After a meta-regression analysis of 4 different subgroups, the results showed a statistically significant effect of mean age ≥50 years on heterogeneity. Compared with studies with an average age of ≥50 years, AI-assisted diagnostic techniques had higher diagnostic performance in studies with an average age of <50 years (0.89 (95% CI: 0.87–0.92) vs. 0.80 (95% CI: 0.73–0.88)), (0.83 (95% CI: 0.77–0.88) vs. 0.73 (95% CI: 0.60–0.87)). Conclusions. AI-assisted diagnostic techniques had good diagnostic efficacy for thyroid nodules. For the diagnosis of <50 year olds, AI-assisted diagnostic technology was more effective in diagnosis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

Reference66 articles.

1. The diagnosis and management of thyroid nodules: a review;C. Durante;JAMA,2018

2. Epidemiology of thyroid nodules;D. S. Dean;Best Practice & Research Clinical Endocrinology & Metabolism,2008

3. Molecular testing for thyroid nodules: Review and current state

4. Thyroid Nodules

5. Epidemiological investigation of the prevention and treatment of iodine deficiency diseases in some cities and counties in Anhui province;L. Zhu;Chinese Journal of Disease Control,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3