Unsteady MHD Thin Film Flow of a Second-Grade Fluid past a Tilted Plate under the Impact of Thermal Radiation and Chemical Reaction

Author:

Endalew Mehari Fentahun1ORCID,Goshu Masitawal Demsie1,Tegegne Yimer Chekol2

Affiliation:

1. Department of Mathematics, Debre Tabor University, Debre Tabor 272, Ethiopia

2. Department of Mathematics, Injibara University, Injibara 40, Ethiopia

Abstract

This paper explores the impact of chemical reaction and thermal radiation on time-dependent hydromagnetic thin-film flow of a second-grade fluid across an inclined flat plate embedded in a porous medium. The thermal radiation based on the Rosseland approximation is incorporated in the energy equation. Uniform applied magnetic field and first-order homogenous chemical reaction are included in the momentum and concentration equations, respectively. The novel mathematical flow model is constructed by using a set of partial differential equations (PDEs). The PDEs are then transformed into an equivalent set of ordinary differential equations (ODEs) and solved by applying the Laplace transform method. However, the time domain solutions are obtained by using the INVLAP subroutine of MATLAB. Physical parameters influencing thin-film velocity, temperature, and concentration are illustrated graphically, while those affecting skin friction, heat, and mass transfer rates are presented in a tabular form. It is found that thin-film velocity and temperature boost with increasing values of thermal radiation, but thin-film velocity decreases with increasing values of chemical reaction and magnetic field. The current investigation is to enhance heat and mass transfer in the design of mechanical systems involving the thin film flow of second-grade fluids over an inclined flat plate after applying thermal radiation and chemical reaction.

Publisher

Hindawi Limited

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3