Drug-Drug Interactions Prediction Using Fingerprint Only

Author:

Ran Bing1ORCID,Chen Lei1ORCID,Li Meijing1ORCID,Han Yujuan1ORCID,Dai Qi2ORCID

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

2. College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

Combination drug therapy is an efficient way to treat complicated diseases. Drug-drug interaction (DDI) is an important research topic in this therapy as patient safety is a problem when two or more drugs are taken at the same time. Traditionally, in vitro experiments and clinical trials are common ways to determine DDIs. However, these methods cannot meet the requirements of large-scale tests. It is an alternative way to develop computational methods for predicting DDIs. Although several previous methods have been proposed, they always need several types of drug information, limiting their applications. In this study, we proposed a simple computational method to predict DDIs. In this method, drugs were represented by their fingerprint features, which are most widely used in investigating drug-related problems. These features were refined by three models, including addition, subtraction, and Hadamard models, to generate the representation of DDIs. The powerful classification algorithm, random forest, was picked up to build the classifier. The results of two types of tenfold cross-validation on the classifier indicated good performance for discovering novel DDIs among known drugs and acceptable performance for identifying DDIs between known drugs and unknown drugs or among unknown drugs. Although the classifier adopted a sample scheme to represent DDIs, it was still superior to other methods, which adopted features generated by some advanced computer algorithms. Furthermore, a user-friendly web-server, named DDIPF (http://106.14.164.77:5004/DDIPF/), was developed to implement the classifier.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3