Application of Neural Networks in Financial Time Series Forecasting Models

Author:

Li Xinhui1ORCID

Affiliation:

1. Department of Applied Economics, Cheongju University, Cheongju 25803, Republic of Korea

Abstract

At present, the economic development of the world’s major economies is showing a positive and positive state. Driven by the development of related industries, the development of the financial field is also changing with each passing day. Various activities in the financial industry are in full swing, and the forecasts of related prospects are also full of uncertainties. Summarizing the laws of financial activities through technical means and making accurate predictions of future trends and trends is a hot research direction that relevant researchers pay attention to. Accurate financial forecasts can provide reference for financial activities and decision-making to a certain extent, promote the steady development of the market, and improve the conversion rate of financial profits. As an algorithm model that can simulate the biological visual system, the convolutional neural network can predict the numerical trend of the next period of time based on known data. Therefore, this paper integrates the support vector machine with the established model by establishing a convolutional neural network model and applies the prediction model to the prediction of financial time series data. The experimental results show that the model proposed in this paper can more accurately predict the trend of the stock index.

Publisher

Hindawi Limited

Subject

Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3