Chemical Modification of Neem (Azadirachta indica) Biomass as Bioadsorbent for Removal of Pb2+ Ion from Aqueous Waste Water

Author:

Hatiya Nigist Awish1,Reshad Ali Shemsedin12ORCID,Negie Zemene Worku23ORCID

Affiliation:

1. Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia

2. Center of Excellence for Sustainable Energy Research, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia

3. Department of Environmental Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia

Abstract

In this study, neem biomass (a mixture of neem leaf and bark), obtained from the matured neem tree, which is an eco-friendly and low-cost material was selected as a bioadsorbent to remove lead metal ion (Pb2+) from aqueous solutions. Neem biomass-based bioadsorbent having a carboxylic group was prepared by activation using chemical modification by NaOH and citric acid with a very simple method. The optimal activation conditions were determined as 37 min, 120°C, in 0.73 M citric acid, with a sample/acid ratio of 1/100 (mass/volume). To determine the basic properties such as chemical structure, porosity, and surface properties of the neem biomass (NB) and chemically modified neem biomass (CMNB), they were characterized by BET, FTIR, SEM, XRD, and pHpzc methods. It was observed that activation has improved the adsorption capacity of the NB and also caused a more amorphous structure. The effects of adsorption parameters such as pH (2–7), contact time (10–110 min), initial Pb2+ ion concentration (100–300 g/L), and bioadsorbent dosage (01–1.1 g/L) on percentage removal of Pb2+ ion were studied. Maximum removal of Pb2+ ion (97.29%) was recorded at 0.9 g/L bioadsorbent dosage, 50 min contact time, pH of 6, and initial metal ion concentration of 100 mg/L. Kinetics and isotherm studies showed that the adsorption mechanism of Pb2+ ion using CMNB follows pseudosecond-order while isotherm studies fit with both models but, relatively, Freundlich model better fit having a little higher R 2 = 0.9804 . The outcome specifies that the modified bioadsorbent can be utilized as a good and low-cost alternative for the treatment of effluent containing lead (II) ions in water.

Funder

Addis Ababa Science and Technology University

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3