Simultaneous Estimation of Wall and Object Parameters in TWR Using Deep Neural Network

Author:

Ghorbani Fardin1ORCID,Soleimani Hossein1ORCID

Affiliation:

1. School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

The purpose of this paper is to present a deep learning model that simultaneously estimates targets and wall parameters in through-the-wall radar (TWR). As a result of the complexity of the environments in which through-the-wall radars operate, TWR faces many challenges. The propagation of radar signals through walls is further delayed and attenuated than in free space. Therefore, the targets are less able to be detected and the images of the targets are distorted and defocused as a consequence. To address the above challenges, two modes are considered in this work: single targets and two targets. In both cases, permittivity and wall thickness are considered, along with the target’s center in two dimensions and the permittivity of targets. Therefore, in the case of a single target, we estimate five values, whereas in the case of two targets, we estimate eight values simultaneously, each representing the mentioned parameters. As a result of using deep neural networks to solve the task of target locating problem in TWR, the model has a better chance of learning and increased accuracy if it involves more parameters (such as wall parameters and permittivity of the wall) in the target location problem. In this way, the accuracy of target locating improved when two wall parameters were considered in problem. A deep neural network model was used to estimate wall permittivity and thickness, as well as two-dimensional coordinates and permittivity of targets with 99% accuracy in single-target and two-target modes.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3