Development and Validation of an Immunotherapy-Related Prognostic Signature Based on Lymph Node Ratio for Gastric Cancer

Author:

Li Jianxin1ORCID,Han Ting1,Wang Xin1,Wang Yinchun1,Chen Xuan1,Chen Wangsheng1,Yang Qingqiang1ORCID

Affiliation:

1. Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China

Abstract

Background. The long-term prognosis of gastric cancer (GC) remains poor due to postoperative recurrence and metastasis. The increasing evidence show that the lymph node ratio (LNR) serves as an independent prognostic factor in patients with GC. In this study, we aimed to develop a prognostic signature for GC based on LNR. Methods. Survival analysis was conducted by comparing low- and high-LNR groups according to the optimal cutoff value of LNR, which was identified by receiver operating characteristic (ROC) curve analysis. Then, we identified the differentially expressed genes (DEGs) related to LNR in the training cohort of GC. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression were performed to construct the risk score signature. We then evaluated the risk score signature from the viewpoints of survival, clinic-pathological characteristics, tumor microenvironment (TME), tumor mutation burden (TMB), and immunotherapeutic and chemotherapeutic efficacy. Results. High LNR was significantly correlated with poorer prognosis and was an independent predictor of recurrence in patients with GC. Then, an eleven-gene signature that could predict the prognosis of GC patients was developed based on LNR-related DEGs in the training cohort, and the results were further confirmed in external independent cohort. In addition, the high-risk group showed aggressive clinicopathological characteristics, specific TME status, low TMB, and low immunotherapeutic sensitivity. Conclusions. The present study constructed an eleven-gene prognostic signature based on LNR to predict the prognosis of patients with GC and facilitate the development of individualized treatment strategy.

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3