Application Research on Roller Skater Detection, Tracking, and Trajectory Prediction Based on Video Stream

Author:

Duan Shaolou1,Meng Lingfeng1,Ma Delong1,Mi Liangyu1ORCID

Affiliation:

1. Hebei Sport University, Shijiazhuang 050041, Hebei, China

Abstract

With the continuous progress of science and technology, the sport of roller skating has developed rapidly and the technical level of the game has become higher and higher. Its sport performance has been rapidly improved. However, China’s roller skating is relatively late, and there is still a certain gap compared with many Western developed countries. In order to improve the performance of China’s roller skating, this study takes the representative Chinese and foreign excellent speed skaters as the research object and compares the sprinting technology of Chinese and foreign excellent speed skaters by using image measurement and image analysis to obtain the kinematic parameters and data of the athletes’ sprinting technology in the competition state. In view of the problem that the current video target tracking algorithm is easy to follow multiple targets, a video multiobject detection and tracking algorithm with improved tracking learning detection (TLD) is studied with the skater in the video as the research object. For the lost target, the prediction function of Kalman filter algorithm is used to track the trajectory of the typical target in the video, and the trajectory tracked by Kalman filter algorithm is used to compensate the lost part of TLD algorithm, so as to obtain the complete trajectory of the typical target in the video to improve the accuracy of video multiobject tracking. Since the existing trajectory prediction algorithms have the limitation of poor accuracy, a social-long short-term memory (Social-LSTM) network-based video typical target trajectory prediction algorithm is proposed to predict the trajectory sequences of typical targets to be detected by incorporating the contextual environment information and the interaction relationship between multiple target trajectories into the Social-LSTM network. The simulation results show that the proposed trajectory prediction algorithm outperforms the traditional LSTM algorithm, Hidden Markov Model Algorithm, and Hybrid Gaussian model algorithm, which is helpful to improve the accuracy of video roller skater target trajectory prediction, and the tracking success rate is 0.98.

Funder

Sports Science and Technology in Hebei Sports Bureau

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference31 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3