Performance Analysis of MEC Based on NOMA under Imperfect CSI with Eavesdropper

Author:

Li Xuehua123ORCID,Pei Yingjie123ORCID,Jiang Huan123ORCID,Yue Xinwei123ORCID,Wang Yafei123ORCID,Suo Yuqiao4ORCID

Affiliation:

1. School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100101, China

2. Institute of Intelligent Communication and Computing (BISTU-IICC), Beijing 100101, China

3. Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing 100101, China

4. College of Science, Changchun University of Science and Technology, Changchun 130022, China

Abstract

Mobile edge computing (MEC) is becoming more and more popular because of improving computing power in virtual reality, augmented reality, unmanned driving, and other fields. This paper investigates a nonorthogonal multiple access- (NOMA-) based MEC system, which is under imperfect channel state information (ipCSI). In this system model, a pair of users offloads their tasks to the MEC server with the existence of an eavesdropper (Eve). To evaluate the impact of Eve on the performance of the NOMA-MEC system, the secrecy outage probability (SOP) expressions for two users with the conditions of imperfect CSI and perfect channel state information (pCSI) are derived. In addition, both throughput and energy efficiency are discussed in the delay-limited transmission mode. Simulation results reveal that (1) due to the influence of channel estimation errors, the secrecy outage behaviors of two users under ipCSI conditions are worse than those of users with pCSI; (2) the secrecy performance of NOMA-MEC is superior to orthogonal multiple access- (OMA-) aided MEC systems; and (3) the NOMA-MEC systems have the ability to attain better system throughput and energy efficiency compared with OMA-MEC.

Funder

Beijing Information Science and Technology University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3