Performance Evaluation of STARPAM Polymer and Application in High Temperature and Salinity Reservoir

Author:

Zhang Chengli1,Wang Peng1ORCID,Song Guoliang2ORCID

Affiliation:

1. College of Petroleum Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318, China

2. College of Mathematics and Statistics, Northeast Petroleum University, Daqing, Heilongjiang 163318, China

Abstract

Based on the properties of high temperature and salinity reservoir, the water-soluble polymer with good heat resistance and salt tolerance can be obtained through copolymerization between 2-acrylamide-2-methyl sulfonate monomer (AMPSN) and acrylamide monomer (AM) in water. The star shaped stable complexes (STARPAM) with the star nucleus of β-CD are prepared by living radical polymerization, which can improve the viscosity and change the percolation characteristics of the polymer in porous media. In the article, the performance of the STARPAM (star-shaped polymer) with heat resistance and salt tolerance was evaluated by comparing the viscosification property, heat and salt resistance, calcium and magnesium tolerance, and long-term thermal stability of STARPAM (star-shaped polymer) with those of HPAM (partially hydrolyzed polyacrylamide) and MO-4000 (linear polymer). The results of physical simulation experiment showed that the viscosity of the STARPAM is 3.3 times that of MO-4000 and 4 times that of HPAM under the conditions of mineralization degree of 20000 mg/L, concentration of 1500 mg/L, and 75°C, which indicated that heat resistance and salt tolerance of the STARPAM are excellent. Oil displacement experiments showed that STARPAM can enhance oil recovery by 20.53% after water flooding, and the effect of oil displacement is excellent. At present, 19 wells were effective with a ratio of 95.2%. Compared with before treatment, the daily liquid production increased by 136 m3, daily oil production increased by 44.6 t, water cut decreased by 4.67 percentage points, and flow pressure decreased by 1.15 MPa.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3