Affiliation:
1. Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
Abstract
TiO2-Fe2O3 binary oxides containing different percentage of Fe2O3 were synthesized using impregnation method. The Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and thermogravimetric with differential thermal analyzer (TG-DTA) analytical techniques were used for understanding of the physicochemical properties and well impregnation of Fe2O3 in TiO2 lattice. During adsorption study, pH of the solution, adsorbent dosage, time of contact, agitation speed, and concentration of adsorbate were optimized. From Langmuir, Freundlich, FG, D-RK, Temkin, and FH adsorption isotherm models, relatively, Langmuir isotherm model fits well. For adsorption-reaction kinetic model, pseudo-first order (PFO), pseudo-second order (PSO), and Elovich were tested and intraparticle diffusion (IPD) for adsorption-diffusion kinetic models. Out of those, the PSO fits well; this indicates that the mechanism of adsorption is under control of adsorption-reaction. The mean adsorption energy, spontaneity, and reproducibility of the adsorbent were also conducted, and all of those studies support the domination of physical adsorption mechanism.
Funder
Adama Science and Technology University
Subject
General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献