Multidimensional Vibrations of Cable-Harnessed Beam Structures with Periodic Pattern: Modeling and Experiment

Author:

Yerrapragada Karthik1ORCID,Agrawal Pranav1ORCID,Salehian Armaghan1ORCID

Affiliation:

1. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada

Abstract

The dynamics of space structures is significantly impacted by the presence of power and electronic cables. Robust physical model is essential to investigate how the host structure dynamics is influenced by cable harnessing. All the developed models only considered the decoupled bending motion. Initial studies by authors point out the importance of coordinate coupling in structures with straight longitudinal cable patterns. In this article, an experimentally validated mathematical model is developed to analyze the fully coupled dynamics of beam with a more complex cable wrapping pattern which is periodic in nature. The effects of cable wrapping pattern and geometry on the system dynamics are investigated through the proposed coupled model. Homogenization-based mathematical modeling is developed to obtain an analogous solid beam that represents the cable wrapped system. The energy expressions obtained for fundamental repeating segment are transferred into the global coordinates consisting of several periodic elements. The coupled partial differential equations (PDE) are obtained for an analogous solid structure. The advantage of the proposed analytical model over the existing models to analyze the vibratory motion of beam with complex cable wrapping pattern has been shown through experimental validation.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3