Ecological and Real-Time Route Selection Method for Multiple Vehicles in Urban Road Network

Author:

Yan Liping1ORCID,Tang Yue1ORCID,Peng Chan1ORCID,Cai Yu1ORCID,Zhang Wenbo1ORCID,Wang Jing1ORCID

Affiliation:

1. Software School, East China Jiaotong University, Nanchang 330013, China

Abstract

Traffic congestion has been a hot topic of research in the field of intelligent transportation, which can be alleviated by efficient route navigation. Most of the existing route planning methods are non-negotiated algorithms, which do not take into account the route conflicts and collaborative relationships between multiple vehicles. Also, most negotiated algorithms have not been comprehensively considered dynamic route collaboration between vehicles, large-scale efficient computation, environmental pollution, etc. Therefore, an ecological multivehicle real-time route selection model (EMR2SM) for urban road networks is firstly proposed in this paper, which combines real-time traffic conditions of the road network with travel time, distance, and exhaust emissions as optimization indicators. In order to solve the large-scale computation problem of traditional negotiated algorithms, an adaptive multiswarm bee colony (AMSBC) algorithm is designed, which efficiently solves the multivehicle dynamic route selection problem. AMSBC searches the optimal route for each vehicle in parallel through multiple population division and self-adaption mechanism, to make multivehicle route selection reach Nash equilibrium. Compared with three non-negotiated optimization algorithms based on swarm technology, EMR2SM is verified by experiments that it improves the efficiency and accuracy of the optimal route selection for multiple vehicles and reduces vehicle emissions, which can effectively reduce traffic congestion and environmental pollution.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3